
| Name | Date | Period |
|------|------|--------|
|      |      |        |

<u>DIRECTIONS</u>: For #1-3, fill in the blanks with **always**, **sometimes**, or **never** to make the statements true.

- **1.** Two squares are **ALWAYS** similar.
- 2. Two congruent parallelograms are **ALWAYS** similar.
- **3.** An equilateral triangle and an isosceles triangle are **SOMETIMES** similar.

<u>DIRECTIONS</u>: For #4-10, write each ratio in its simplest form. Use the following diagram for #4-8.



**Given**: Quadrilateral *QBRE* is a rectangle

- **4.** QB : BE **5:3**
- **5.** ET : EQ **1:2**
- **6.** ER : RQ **5:3**

- **7.** ER : RQ: QB **5:3:5**
- **8.**  $m \not= QTB : m \not= RTE$  **1:1**

**9.** 15 inches: 30 inches **1:2** 

**10.** 6 mm : 5 cm **3 : 25** 

<u>DIRECTIONS</u>: For #11, accurately complete the definition of similar polygons.

- **11.** The definition of similar polygons has two parts. They are
  - a) corresponding angles are congruent AND
  - b) corresponding sides are in the same ratio (proportional).

DIRECTIONS: For #12-15, solve for x. Show work.

**12.** 
$$\frac{4x}{7} = \frac{24}{3}$$
  $x = 14$ 

13. 
$$\frac{x-9}{6} = \frac{x}{4}$$
  $x = -18$ 

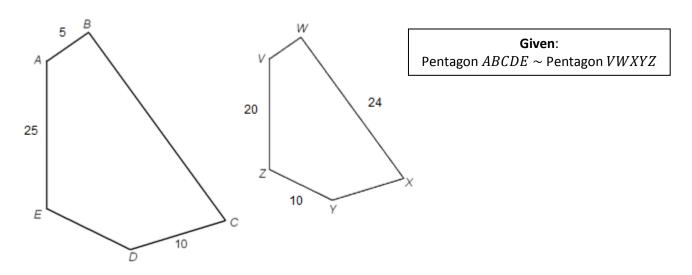
14. 
$$\frac{4x-3}{3x+1} = \frac{6}{5} x = 10.5 \text{ or } 10\frac{1}{2} \text{ or } \frac{21}{2}$$

14. 
$$\frac{4x-3}{3x+1} = \frac{6}{5} x = 10.5 \text{ or } 10\frac{1}{2} \text{ or } \frac{21}{2}$$
 15.  $\frac{x+1}{x-4} = \frac{x+3}{x-6} \quad x = 1.5 \text{ or } 1\frac{1}{2} \text{ or } \frac{3}{2}$ 

DIRECTIONS: For #16-18, solve the following problems. Write your answer in the provided blanks. Show all work.

**16.** The angles of a triangle are in a ratio of 3:4:8. What is the measure of each angle?

36 96


17. The measures of two consecutive angles of a parallelogram are in the ratio of 17:3. Find the measure of each angle.

> **153 27**

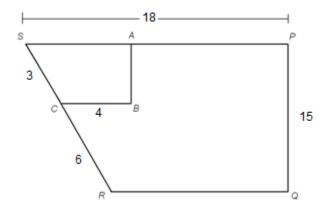
18. The angles of a pentagon are in a ratio of 4:5:8:9:10. What is the measure of each angle?

> 60 **75**

120 135 **150**  DIRECTIONS: Use the following diagram to answer/solve #19-23. Show work when solving for segment lengths.



**19.** 
$$m \not = D = m \not Y$$


**20.** What is the scale factor of *ABCDE* to *VWXYZ*? **5:4** 

**21.** 
$$DE = 12.5 \text{ or } 12\frac{1}{2}$$
 **22.**  $XY = 8$ 

**22.** 
$$XY = 8$$

**23.** 
$$BC = 30$$

<u>DIRECTIONS</u>: Use the following diagram to answer/solve #24-27. Show work when solving for segment lengths.



Given:

Quadrilateral  $PQRS \sim$  Quadrilateral ABCS

**24.** 
$$AB = 5$$

**25.** 
$$SA = 6$$

**26.** 
$$AP = 12$$

**27.** 
$$RQ = 12$$